SES # | LECTURE NOTES | ADDITIONAL FILES |
---|---|---|
L1 | Using MATLAB® to evaluate and plot expressions (PDF) | rate.m (M) |
L2 | Solving systems of linear equations (PDF) | rate.m (M) |
L3 | Matrix factorization Modularization (PDF) | gausselim_pivot.m (M) gauss.m (M) |
L4 | When algorithms run into problems: Numerical error, ill-conditioning, and tolerances (PDF) | |
L5 | Introduction to systems of nonlinear equations (PDF) | |
L6 | Modern methods for solving nonlinear equations (PDF) | |
L7 | Introduction to eigenvalues and eigenvectors (PDF) | |
L8 | Constructing and using the eigenvector basis (PDF) | |
L9 | Function space vs. real space methods for partial differential equations (PDEs) (PDF) | |
L10 | Function space (PDF) | |
L11 | Numerical calculation of eigenvalues and eigenvectors Singular value decomposition (SVD) (PDF) | interpolateV.m (M) setup_interV.m (M) |
L12 | Ordinary differential equation - initial value problems (ODE-IVP) and numerical integration (PDF) | |
L13 | Stiffness MATLAB® ordinary differential equation (ODE) solvers (PDF) | |
L14 | Implicit ordinary differential equation (ODE) solvers Shooting (PDF) | |
L15 | Differential algebraic equations (DAEs) Introduction: Optimization (PDF) | |
L16 | Unconstrained optimization (PDF) | |
L17 | Constrained Optimization (PDF) | |
L18 | Optimization Sensitivity analysis Introduction: Boundary value problems (BVPs) (PDF) | |
L19 | Boundary value problems (BVPs) lecture 2 (PDF) | makeA_sparse.m (M) makeAforLaplacian.m (M) |
L20 | Boundary value problems (BVPs) lecture 3: Finite differences, method of lines, and finite elements (PDF) | |
L21 | TA tutorial on BVPs, FEMLAB® (PDF) | |
L22 | Introduction: Models vs. Data (PDF) | |
L23 | Models vs. Data lecture 2: Bayesian view (PDF) | |
L24 | Uncertainties in model predictions (PDF) | |
L25 | Conclude models vs. data (PDF) | |
L26 | TA led review (PDF) | Review exam 2 (PDF) (Courtesy of Sandeep Sharma. Used with permission.) |
L27 | Models vs. Data recapitulation Monte Carlo and molecular dynamics (PDF) | |
L28 | Guest lecture on Monte Carlo / molecular dynamics: Frederick Bernardin (PDF) | Intro to Monte Carlo methods (PDF) (Courtesy of Frederick Bernardin. Used with permission.) |
L29 | Global optimization Multiple minima (PDF) | |
L30 | Modeling intrinsically stochastic processes Multiscale modeling (PDF) | |
L31 | Fluctuation-dissipation theorem (PDF) | |
L32 | Kinetic Monte Carlo and turbulence modeling (PDF) | |
L33 | Operator splitting Strang splitting (PDF) | |
L34 | Fourier transforms Fast fourier transform (FFT) (PDF) | |
L35 | Summary: Problem solving (PDF) | |
L36 | TA led final review (PDF) | Review final exam (PDF) (Courtesy of Sandeep Sharma. Used with Permission.) |