Our supplementary handouts were mostly graphical, and they appeared at the lectures listed in this table.
| LEC # | TOPICS | HANDOUTS | 
|---|---|---|
| I. Complex Algebra and Functions | ||
| 5 | Simple Mappings: az+b, z2, √z Idea of Conformality  | (PDF) | 
| 6 | Complex Exponential | (PDF) | 
| 7 | Complex Trigonometric and Hyperbolic Functions | (PDF) | 
| II. Complex Integration | ||
| 11 | Contour Integrals | (PDF) | 
| 15 | Bounds Liouville's Theorem Maximum Modulus Principle  | (PDF) | 
| 17 | Radius of Convergence of Taylor Series | (PDF) | 
| III. Residue Calculus | ||
| 21 | Real Integrals From -∞ to +∞ Conversion to cx Contours  | (PDF) | 
| IV. Conformal Mapping | ||
| 25 | Invariance of Laplace's Equation | (PDF) | 
| 27 | Bilinear/Mobius Transformations | (PDF) | 
| 28 | Applications I | (PDF) | 
| 29 | Applications II | (PDF) | 
| V. Fourier Series and Transforms | ||
| 30 | Complex Fourier Series | (PDF) | 
| 31 | Oscillating Systems Periodic Functions  | (PDF) | 
| 32 | Questions of Convergence Scanning Function Gibbs Phenomenon  | (PDF) | 
| 35 | Special Topic: The Magic of FFTs I | (PDF) | 
| 36 | Special Topic: The Magic of FFTs II | (PDF) |